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Goal of this lecture

To comment, from an engineer point of view, the research
methodology used in Life Sciences.



VWhat do engineers do!

* Engineers are problem solvers.

* They study high level math and science and use those (sometimes with
their creativity and imagination), to isolate problems, analyze them, address
them and come up with practical ways to change things so they perform
better.

Engineers are trained to be ‘big picture’ thinkers.



FIrst observation

* The research methodology used in Life Sciences Is In many
aspects different from an “engineered oriented’ one.

* Biologists feel comfortable with UNCERTAINTY.

* Engineers always strive for PROOFS
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Biology for an engineer

- Biology s Reverse Engineering

* “Reverse engineering Is the process of discovering the functional
principles of a device, object, or system through analysis of its
structure, function, and operation'.



Biology for an engineer

» [he most important concept to understand about reverse
engineering Is that:

designing a system and reverse engineer it are two opposite tasks
whose complexity may differ in orders of magnitude.



Example: sampling problem

* Goal. to reconstruct the dynamics of a signal
* Problem: which sampling frequency do | have to use!

* Theorem: In signal processing a theorem says that the sampling
frequency has to be at least the DOUBLE of the signal

frequency.



Translation

* Goal. to figure out the plot of a movie by seeing the fewest
possible screenshots of It.

* Problem: How often should we grab a screenshot (the sampling
rate) to be able to reliably reconstruct the plot of the movie!?

* It depends on the movie dynamics: how often (seconds/
minutes/hours) something important happens!?




» assume that two consecutive significant events never take
place less than |0 minutes apart.....

- ...then the sampling theorem law tells us that we must get a
screenshot at least every five minutes to be able to infer
anything reliable about the plot.



Problem for biologists

* [Ime-series are used to reconstruct regulatory networks from
gene expression data
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Problem for biologists

» If we can take a screenshot of gene expression every 5
minutes, what | get can be used to reconstruct the network
dynamics only If their frequency is in the order of |0 minutes...

» Otherwise | cannot say anything reliable about the original
signal.

» S0 how often, and how long does 1t takes for a gene to change
its expression! VWhat is the gene expression “frequency’



Summary

Biology 1s Reverse tngineering

The system’s complexity should drive the reverse engineering
methodology

Let’s take this concept a bit further



Reverse tngineering

Iwo main approaches:

* the bottom-up approach, mostly followed by lite
sciences researchers

- the top-down approach, typical of the engineering worla

Top-Down Approach The final goal Is, for both, a reliable model of the system
under investigation.

Modeling Is a way to encapsulate part of the real world In
terms of mathematical relationships.

Bottom-up approach



Bottom-up
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Bottom-up

* [he variables believed as important are selected to
determine the state of a system (e.g. a set of genes)

» Their relationships Is inferred from a small set of

observations (e.g. gene expression experiments) (=
bottom)

» Local observations are “merged’ to create a higher-
level model (=up)

» This approach works very well with linear systems.



Linear Systems

* V¥e can consider the eftect of each VakleiEiEs
separately, because the sum of their effects
equals the effect of their sum.




Linear Systems

» Linear systems are easy to understand also for
non-mathematicians and are also easy to
visualize.

* For this reason a large part of the life science
world (and the medical one In particular) still
reasons In linear terms.

- But only a few biological systems are truly
linear.



Complex Systems

» Complex (or non-linear) systems are much more difficult to
understand or visualize.

» Complex systems consist of many diverse and autonomous
but interrelated and interdependent components or parts
inked through many (usually dense) interconnections.




Complex Systems

» Complex systems cannot be described by a single rule and they exhibit properties that

emerge from the interaction of their parts and which cannot be predicted only from the
properties of the parts.

» Complex Systems' dynamics heavily depend on initial conditions and perturbations (the
butterfly effect.....)







Complex Systems - examples

* In a soccer team, the players are the parts of the system; the
rules of the game are the interconnections; the purpose of the
system Is both to play and to win the game.

* What emerges Is the game Itself. Imagine If you isolated one
soccer player; he might be able to practice shooting or
dribbling, but a game of soccer would never be evident.

* [he concept of “game’” only emerges from the interactions of
the parts of the system




Complex Systems - examples

* A university

« A beehive

oA el
* The human body as a collection of cells



Problems In Reverse Engineering

To merge multiple observation
for obtaining a larger model

A & (bottom-UP) you need to make
» }‘. all things work together; but it
the systemils COmipIc s

v even If a bottom-up approach will allow to get early insights on
ifENs /stiem behavior ...

v 1t is likely that some key trait d’union are missed because of the

specificity of the observations, or, worst, because the complexity
itself hides the basic mechanics.



50, for Complex Systems, the way to go 1s TOP-DOWN...



lop-down

* [ he variables believed as important are

Top-down
unknown ...

* [ heir relationships is unknown ...

* A high-level hypothesis 1s formulatedq,

AFAAN specifying but not detailing any first-level
2y subsystems.

3 * Each subsystem is then refined in yet greater
detall, sometimes In many additional subsystem
levels



Propblems

» Top-down works on abstractions and inferences, so the
reached conclusions often are general enough to try to
explain the overall mechanics but their basis often lie on
computational assumptions (i.e., target of mIRNAs, or
protein interactions) which may be not right at all.




Networks

* Networks allow to easily model the interconnections between
the different components of a complex system.

* [he study of networks allows to understand properties
otherwise Invisible



Biological Networks

» Metabolic network: dynamic networks of “known
structure”. Flux Balance Analysis

» Protein interaction network: static networks. Topological/
structural measures

» Gene regulatory network (GRN): dynamic networks of
“unknown structure’. Simulations, equilibrium states, ...
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SImplified Representation of GRN

* A gene regulatory network can be represented by a
directed graph;

Node represents a gene;
Directed edge stands for the
modulation (regulation) of one

node by another:

e.g. arrow from gene X to gene Y means gene X affects
expression of gene Y




Autoregulation

STE12

Motifs

Multi-Component Loop

Single Input Motif

LEU1

BAT1

lLv2

-

*Network motifs are the simplest units of network archrtecture.

Feedforward Loop

@SWI4
L

mox

YAPS
' -
: o
—» | cLB2

Multi-Input Motif

RPL16A | |RPS218B| RPS22A

Regulator Chain

SWIS |- -b@—b

ASH1

SGA1

PCL1

* [hey be used to assemble a transcriptional regulatory network.



Why Study GRN!?

» (Genes are not iIndependent;

- They regulate each other and act collectively;

» This collective behavior can be observed using microarray;

B Eliie ocnies control the response of the cell o chaiigEsNii
the environment by regulating other genes;

» Potential discovery of triggering mechanism and treatments
for disease;
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Attractors

» Stable states are called ATTRACTORS and can be:

v point attractors: one stable state

v periodic attractors: the systems remains within a limrted set of states (e.g.
cellular functions, cellular cycle, ...)

v strange attractors: the set of stable states is not well defined...... but It exists




* Now let's imaging the system under study Is not made of 2
echies el of 30.000 ...

* Not easy to visualize a state space in 30.000 dimensions....



cplgenetic landscape

A qualitative “conceptual’ representation of the possible states
has been named epigenetic landscape by Conrad Hal
VWaddington in [932.

In this context "EPIGENETIC" has a more holistic meaning than

the “traditional’” one, linked only with chemical modifications of
e IDINVA (el all B o)



The GRN shapes the epigenetic landscape




Differentiation
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Imagine ...

* [he number of variables is so huge that we can easily picture
parts of the landscape that look (to us) almost identical, but
maybe differ in small details.
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Challenges

» Can we “reconstruct” the epigenetic landscape! (which
correspond to Reverse Engineering the network)

» Are Microarrays the “picture” of (a part of) the attractors?

* Network dynamics simulation (up to 100 nodes....):

v with Boolean Networks we have 2N states (where N is the number of nodes)
v .. but genes are not boolean ..

v divide and conquer approaches?



Challenges

» Does it make sense to study networks WITHOUT miIRNAs,
CERINAE Eer



An example: the Pathway
Protection Loops

* Hypothesis: some miRNA play a PROTECTIVE role of the
pathway that express them



— Pathway
TGFB Antago nist

TOFBMIOFBRS oo airn Transcription
. H@_»_M Factor (PATF)
1 5 FBR2 toreW@CVRLI Dathway '

TGFB1 TG? Ny
S .
VAL rotection v y
TGFB1 Huma TG an_TGFBR2_Human

TGFB1 TGFBWFBRZ TGFBR1 athway
Antagonist
Gene (PAG)

Biological
Pathway




1 he pipeline

~—, Entrez E-Utils

(1 ) y

\_) miRBase microRNA.org
Intragenic miRNA Intragenic miRANA targets

pathway genes

(PATFs) ( PPLS

antagonist miRNAs antagonist miRNA
antagonist miRNAs host genes (PAGs) host gene TFs (PATFs)

miRBase .

pathway genes




Results

» 3 sets of pathways analyzed: metabolic, non-metabolic, anad
random

* PPLs appear in about 55% of non-metabolic pathways while
they appear only in about 9% of metabolic pathways.

* From the statistical analysis, we can conclude that the presence
of PPLs In the set of considered KEGGs is not a random event.
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An example: Boolean Networks to Model
Post- [ranscriptional Regulation

mir=7 belongs to an incoherent feed-forward loop.
This motif leads to an accelerated and transient pulse to
downstream genes expression.

In the resulting network:

Notch EGFR e fluctuating peaks of ATO would
result In transient pulses of ATO
EsplC Pnt-P1 repression by EsplC
mir-7 e sustained increase of ATO would
ATO | result In sustained repression of

EsplC by miR-7 and a

‘ ' ding stabilizati A
Sense corresponding stabilization o

Sensory organ precursor (SOP) determination network




Results

EsplC = ATO_P <op> Notch
—» @ Pnt-P1 = EGFR

EspIC_P =(= mir-7) <op> EsplC L\ e chic_p Pnt-P1_P | Pnt-P1_P = Pnt-P1

mir-7 = mir-7_g @ S

@ ATO = Pnt-P1_P <op> (= EsplIC_P) <op>

Sense P
mir-7_g = ATO_P

A ATO_P | ATO_P =ATO
i Constraint:
C1 =EspIC_P A (- EsplC)
Sense =(= ATO_P) @ C2 = Pnt-P1_P A (= Pnt-P1)

C3 = ATO_P A (= ATO)
C4 = Sense_P A (- Sense)
Sense P = Sense | Sense P C5 = mir-7 A (- mir-7_Q)
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Increase of ATO would result in sustained repression of EsplC
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An Example: Regulators of miR-2 14
N Mmelanoma progression

. Starting from | mIRNA and a list of (/3) Correlated Proteins, is it possible to
search for regulatory modules!

@ ) ALCAM, TFAP2A, ADAM9, POSTN,
------- kﬁ/ NCAMI, SEMA3A, PVRL2, JAGI,

EGFR, ...

source /3 Correlated Proteins
(hsa-mir-*)

2. s 1t possible to generalize the approach!?
. Investigate GRNs identifying regulatory modules

2. to retrieve/merge/manage (post-)transcriptional regulations from public DBs



miR-214
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Results

- [he computational analysis
didn’t show Type-0 or
Type-| Interactions

* [t doesnt imply that they do
not exist

* [t does imply that there I1s no
evidence of thelir presence In

Correlate ,
d Protein the available databases

Correlate

d Protein




Results

* No SIGN prediction for the
resulting differential expression

underlined by computational
analysis
miRNA * largetMine does not include
Host Gene them.

Hosted
miRNA

* [F Encyclopedia: no
programmatically available.

Correlated
Protein
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Identified 27 modules:

3, CEACAMI,
2C, JAGI

* The 9 including SREBF2 have
been preliminarily validated.
* The other 18 are still on-going.

source i MIRNA Host Hosted miRNA Correlated Proteins
(hsa-mir-*) (hsa-mir-*)




Results

* Since miR-33a inhibits the motility of lung cancer cells (Rice et
al. 2013), its down-regulation related to miR-214
overexpression could contribute to increase cell motility.

» Since SREBF2 and miR-33a act in concert to cholesterol
nomeostasis (Najafi-shoushtari et al,, 2010), and considering
the lipogenic pathway as a metabolic hallmark of cancer cells,
this confirms the potential role of miR-214 in cancer
formation and progression.




The role of System Biology

top-down
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The role of System Biology

* Systems Biology and Computational Biology are not only the
latest fashion in biology, but a necessary step to overcome the
imrtations of both methodological approaches and try to find
a “‘middle ground”.



Questions
are
guaranteed in

life;
Answers
arent.




